EN

数量经济与商务统计系

康雁飞
副教授

yanfeikang@buaa.edu.cn

教师个人主页

北京航空航天大学经济管理学院副教授、博士生导师

数量经济与商务统计系主任

北航“卓越百人计划(2016)”和北航“青年拔尖人才支持计划(2021)”入选者

地址:北京市海淀区学院路37号新主楼A931

个人主页: http://yanfei.site

实验室主页:http://kllab.org

欢迎有兴趣的同学加入!

【个人简介】

康雁飞,现任北航经管学院副教授、博士生导师、北航数量经济与商务统计系主任。2014年博士毕业于莫纳什大学,师从澳大利亚科学院院士 Kate Smith-Miles 教授和 Danijel Belusic 教授,2014-2015年于莫纳什大学从事博士后研究,合作导师为两位澳大利亚科学院院士 Kate Smith-Miles 教授和 Rob Hyndman 教授,2015-2016年就职于百度大数据部。研究方向为时间序列预测等。共承担科研项目10余项,其中主持国家自然科学基金2项,参与国家重点研发计划课题、阿里巴巴创新研究计划各1项。在 European Journal of Operational Research, International Journal of Forecasting 等国际权威期刊发表论文近30篇,并著有多项专著和译著。曾在国际预测大会、ICDM、IJCNN、IEEE CIDM、世界贝叶斯大会等受邀做报告。担任《R Journal》(SCI, JCR Q1) 副主编、中国统计教育学会理事、北京大数据协会理事及超过10个国际学术期刊审稿人。先后入选北航“卓越百人计划”和北航“青年拔尖人才计划”。

【教育背景】

‣ 2010.09 – 2014.08 博士 澳大利亚莫纳什大学

博士论文: Event detection, classification and analysis on atmospheric time series(导师: Kate Smith-Miles 教授、Danijel Belusic教授)

‣ 2009.09 – 2010.07 统计学研究生 中国人民大学

‣ 2005.09 – 2009.07 统计学本科 山东财经大学

【研究领域】

时间序列预测、统计计算、大数据分析

【工作经历】

‣ 2016.11 – 今 北京航空航天大学 经济管理学院 副教授

‣ 2015.08 – 2016.08 百度大数据部 大数据高级研发工程师

‣ 2014.08 – 2015.07 澳大利亚莫纳什大学 博士后

合作导师: Rob Hyndman 教授;Kate Smith-Miles 教授

【主要学术论文】

28. Yun Bai, Ganglin Tian, Yanfei Kang*, Suling Jia (2023). A hybrid ensemble method with negative correlation learning for regression. Machine Learning 112: 3881–3916. (SCI, JCR Q1)

27. Spyros Makridakis, Fotios Petropoulos, Yanfei Kang* (2023). Large Language Models: Their success and impact. Forecasting 5(3), 536-549.

26. Spyros Makridakis, Fotios Petropoulos, Yanfei Kang* (2023). The Impact of Large Language Models like ChatGPT on Forecasting. Foresight: The International Journal of Applied Forecasting 69:61-62.

25. Xiaoqian Wang, Rob Hyndman, Feng Li, Yanfei Kang* (2022). Forecast combinations: an over 50-year review. International Journal of Forecasting 39(4): 1518-1547. (SSCI, ABS3)

24. Bohan Zhang, Yanfei Kang, Anastasios Panagiotelis, Feng Li (2022). Optimal reconciliation with immutable forecasts. European Journal of Operational Research 308(2): 650-660. (SCI, ABS4)

23. Li Li, Yanfei Kang, Fotios Petropoulos, Feng Li (2022). Feature-based intermittent demand forecast combinations: accuracy and inventory implications. International Journal of Production Research 61(22): 7557-7572,. (SCI, ABS3)

22. Li Li, Yanfei Kang, Feng Li (2022). Bayesian forecast combination using time-varying features. International Journal of Forecasting 39(3): 1187-1302. (SSCI, ABS3)

21. Xiaoqian Wang, Yanfei Kang, Rob Hyndman, Feng Li (2022). Distributed ARIMA models for ultra-long time series. International Journal of Forecasting 39(3): 1163-1184. (SSCI, ABS3)

20. Xixi Li, Fotios Petropoulos, Yanfei Kang* (2022). Improving forecasting by subsampling seasonal time series. International Journal of Production Research 61(3): 976-992. (SCI, ABS3)

19. Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M.Z., Barrow, D.K., Bergmeir, C., Bessa, R.J., Boylan, J.E., Browell, J., Carnevale, C., Castle, J.L., Cirillo, P., Clements, M.P., Cordeiro, C., Cyrino Oliveira, F.L., De Baets, S., Dokumentov, A., Fiszeder, P., Franses, P.H., Gilliland, M., Gönül, M.S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey, N., Hendry, D.F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V.R.R., Kang, Y., Koehler, A.B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martinez, A.B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panapakidis, I., Pavía, J.M., Pedio, M., Pedregal Tercero, D.J., Pinson, P., Ramos, P., Rapach, D., Reade, J.J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H.L., Spiliotis, E., Syntetos, A.A., Talagala, P.D., Talagala, T.S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Trapero Arenas, J.R., Wang, X., Winkler, R.L., Yusupova, A., Ziel, Z. (2022). Forecasting: theory and practice. International Journal of Forecasting 38(3): 705-871. (SSCI, ABS3)

18. Yanfei Kang, Wei Cao, Fotios Petropoulos, Feng Li (2021). Forecast with forecasts: Diversity matters. European Journal of Operational Research 301(1): 180-190. (SCI, ABS4)

17. Xixi Li#, Yun Bai#, Yanfei Kang* (2021). Exploring the social influence of Kaggle virtual community on the M5 competition. International Journal of Forecasting 38(4): 1507-1518. (SSCI, ABS3)

16. Evangelos Theodorou#, Shengjie Wang#, Yanfei Kang*, Evangelos Spiliotis, Spyros Makridakis, Vassilios Assimakopoulos (2021). Exploring the representativeness of the M5 competition data, International Journal of Forecasting 38(4): 1500-1506. (SSCI, ABS3)

15. Thiyanga S. Talagala, Feng Li, Yanfei Kang* (2021). FFORMPP: Feature-based forecast model performance prediction, International Journal of Forecasting 38(3): 920-943. (SSCI, ABS3)

14. Kasun Bandara, Hansika Hewamalage, Yuan-Hao Liu, Yanfei Kang, Christoph Bergmeir (2021). Improving the accuracy of global forecasting models using time series data augmentation, Pattern Recognition 120:108148. (SCI)

13. Xiaoqian Wang, Yanfei Kang, Fotios Petropoulos, Feng Li (2021). The uncertainty estimation of feature-based forecast combinations, Journal of the Operational Research Society 73(5): 979-993. (SSCI&SCI, ABS3)

12. Yanfei Kang, Evangelos Spiliotis, Fotios Petropoulos, Nikolaos Athiniotis, Feng Li, Vassilios Assimakopoulo (2020). Déjà vu: A data-centric forecasting approach through time series cross-similarity, Journal of Business Research 132: 719-731. (SSCI, ABS3)

11. Xixi Li, Yanfei Kang, Feng Li (2020). Forecasting with time series imaging, Expert Systems with Applications 160: 113680. (SCI, ABS3)

10. Yanfei Kang, Rob J Hyndman, Feng Li (2020). GRATIS: GeneRAting TIme Series with diverse and controllable characteristics, Statistical Analysis and Data Mining 13(4): 354-376. (SCI)

9. Yitian Chen, Yanfei Kang*, Yixiong Chen, Zizhuo Wang (2020). Probabilistic Forecasting with Temporal Convolutional Neural Network, Neurocomputing 399: 491-501. (SCI)

8. Feng Li, Yanfei Kang* (2018). Improving forecasting performance using covariate-dependent copula models, International Journal of Forecasting 34(3): 456-476. (SSCI, ABS3)

7. Yanfei Kang*, Rob J. Hyndman, Kate Smith-Miles. (2017). Visualising Forecasting Algorithm Performance using Time Series Instance Space. International Journal of Forecasting 33(2): 345–358. (SSCI, ABS3)

6. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2015). Classes of Structures in the Stable Atmospheric Boundary Layer. Quarterly Journal of the Royal Meteorological Society 141(691): 2057–2069. (SCI)

5. Yanfei Kang. (2015). Detection, classification and analysis of events in turbulence time series. Bulletin of the Australian Mathematical Society 91(3): 521-522. (SCI)

4. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2014). Detecting and classifying events in noisy time series. Journal of the Atmospheric Sciences 71(3): 1090–1104. (SCI)

3. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2014). A note on the relationship between turbulent coherent structures and phase correlation. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(2) 023114: 1-6. (SCI)

2. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2013). How to extract meaningful shapes from noisy time-series subsequences? In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, pp. 65–72. (EI)

1. Yanfei Kang. (2012). Real-time change detection in time series based on growing feature quantization. In: Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–6. (EI)

【专著】

Li Li, Feng Li and Yanfei Kang* (2023), “Forecasting Large Collections of Time Series: Feature-Based Methods”, In Forecasting with Artificial Intelligence: Theory and Applications. Cham , pp. 251-276. Springer Nature Switzerland.

康雁飞、李丰(2023). 统计计算:方法与实践. 在线版本:https://yanfei.site/docs/statscompbook/.

李丰、康雁飞(2022). 大数据存储与计算. 在线版本:https://yanfei.site/docs/distcompbook/.

【译著】

康雁飞、李丰(2023 译). 预测:方法与实践(第三版)(Hyndman & Athanasopoulos 著. Forecasting: Principles and Practice). 在线版本:http://otexts.com/fpp3cn/.

康雁飞、李丰(2019 译). 预测:方法与实践(第二版)(Hyndman & Athanasopoulos 著. Forecasting: Principles and Practice). 在线版本:http://otexts.com/fppcn/.

【科研项目】

‣ 2022 年 – 2025 年,大规模时间序列的联合预测研究:全局模型视角,国家自然科学基金面上项目, 负责人

‣ 2021年 – 2024年,北京航空航天大学“青年拔尖人才支持计划”,负责人

‣ 2018 年 – 2020 年,基于实例空间的时间序列预测研究,国家自然科学基金青年项目, 负责人

‣ 2017 年 – 2019 年,北京航空航天大学 “卓越百人计划” ,负责人

‣ 2017 年 – 2018 年,大数据理论及应用研究,北京航空航天大学基本科研业务项目,主要参与者

‣ 2014 年 – 2015 年,Stress-testing algorithms: generating new test instances to elicit insights, funded by Australian Research Council, 主要参与者

【教学项目】

‣ 2023年,《应用统计学》国家一流本科课程项目,主要参与者

‣ 2020年,《应用统计学》校级一流本科课程项目,主要参与者

‣ 2018年,《应用统计学》“凡舟”基金课程团队建设项目,主要参与者

【主要学术报告】

12. The 2023 ICDM workshop AI4TS,中国

11. The 2021 ICDM workshop SFE-TSDM: Systematic Feature Engineering for Time-Series Data Mining,主旨报告,线上

10. 2020年国际预测大会(The 2020 International Symposium on Forecasting),分会场主席,线上

9. 2019年国际预测大会(The 2019 International Symposium on Forecasting),分会场主席,希腊

8. 2019年蒙特卡洛方法会议(The 12th Conference on Monte Carlo Methods),澳大利亚

7. 2017年北京预测研讨会(The 2017 Beijing Workshop on Forecasting),中国

6. 2017年国际预测大会(The 2017 International Symposium on Forecasting),分会场主席,澳大利亚

5. 2017年计量经济学与统计学国际会议(The 2017 International Conference on Econometrics and Statistics),邀请报告,香港

4. 2016年国际贝叶斯大会(International Society for Bayesian Analysis World Meeting 2016),分组报告,意大利

3. 2014年地球数学会议(The 2014 Conference – Mathematics of Planet Earth),邀请报告,澳大利亚

2. 2013年IEEE计算机智能与数据挖掘大会(The 2013 IEEE Symposium on Computational Intelligence and Data Mining),分组报告,新加坡

1. 2012年IEEE神经网络大会(The 2012 International Joint Conference on Neural Networks),邀请报告,澳大利亚

【所授课程】

‣ 大数据平台基础(本科生),2023秋、2022年秋、2021年秋、2020年秋、2019年春

‣ 贝叶斯统计与计算(本科生),2023秋、2023春、2022年春、2021年春、2020年春

‣ 应用统计学(本科生,国家一流本科课程),2023春、2022年春、2021年春、2020年春

‣ 商业预测(MBA/MPAcc),2023秋、2023春、2022年春、2020年秋、2019年秋

‣ 贝叶斯统计(本科生),2019年秋

‣ 统计计算(本科生),2019年春

‣ 广义线性模型(本科生),2018年春

‣ 计量经济学(留学生),2018年春、2017年春

‣ 数据处理与统计分析实验(硕士研究生),2019年春、2018年春、2017年春

‣ 科学写作与报告(博士研究生),2022年春、2021年春

‣ 高级计量经济学(博士研究生),2018年春

【所获奖励】

‣ 2021.17,入选北京航空航天大学 “青年拔尖人才支持计划”

‣ 2017.06,第十一届北京航空航天大学青年教师教学业务培训基础班 “优秀学员”

‣ 2016.11,入选北京航空航天大学 “卓越百人计划”

‣ 2012.05,澳大利亚数学科学学院寒假学校旅行奖

‣ 2010.05,国家公派留学奖学金

‣ 2009.09,中国人民大学硕士入学一等奖学金

‣ 2008.10,国家奖学金

【主要合作者】

‣ Prof. Kate Smith-Miles, University of Melbourne

‣ Prof. Rob J. Hyndman, Monash University

‣ Dr. Danijel Belusic, Swedish Meteorological and Hydrological Institute

‣ Prof. Feng Li, Central University of Finance and Economics

‣ Prof. Fotios Petropoulos, University of Bath

‣ Dr. Evangelos Spiliotis, National Technical University of Athens

‣ Prof. Anastasios Panagiotelis, University of Sydney

‣ Dr. Christoph Bergmeir, Monash University

‣ Prof. Zizhuo Wang, The Chinese University of Hong Kong

‣ Dr. Thiyanga Talagala, University of Sri Jayewardenepura

‣ Yitian Chen, BIGO Technology

‣ Xixi Li, The University of Manchester