EN

博士生导师

当前位置: 首页 > 师资力量 > 师资队伍 > 其他 > 博士生导师 > 正文
康雁飞
教授

yanfeikang@buaa.edu.cn

教师个人主页
个人简介

康雁飞,现任北京航空航天大学经济管理学院教授、博士生导师、数量经济与商务统计系主任。2014年博士毕业于莫纳什大学,随后于莫纳什大学从事博士后研究,合作导师为澳大利亚科学院院士Kate Smith-Miles 教授和澳大利亚科学院院士Rob Hyndman教授,2015-2016年就职于百度大数据部。研究方向为大规模时间序列预测、预测驱动的管理决策、大数据分析等。共承担科研项目近10项,包括主持国家自然科学基金3项,参与阿里巴巴创新研究计划、国家重点研发计划课题1项。近年来在《European Journal of Operational Research》、《International Journal of Forecasting》等期刊发表论文30余篇。担任国际预测者协会Director、《International Journal of Forecasting》副主编、《R Journal》副主编、中国运筹学会决策科学分会副秘书长、中国统计教育学会理事、北京大数据协会理事。先后入选北航“卓越百人计划”(2016)和北航“青年拔尖人才计划”(2021)。

地址:北京市海淀区学院路37号新主楼A1025

个人主页: http://yanfei.site

实验室主页:http://kllab.org

欢迎有兴趣的同学加入!

讲授课程

‣ 应用统计学(本科生,国家级一流本科课程),2020年至今

‣ 大数据平台基础(本科生),2019年至今

‣ 贝叶斯统计与计算(本科生),2020年至今

‣ 商业预测(MBA/MPAcc),2023秋、2023春、2022年春、2020年秋、2019年秋

‣ 贝叶斯统计(本科生),2019年秋

‣ 统计计算(本科生),2019年春

‣ 广义线性模型(本科生),2018年春

‣ 计量经济学(留学生),2018年春、2017年春

‣ 数据处理与统计分析实验(硕士研究生),2019年春、2018年春、2017年春

‣ 科学写作与报告(博士研究生),2022年春、2021年春

‣ 高级计量经济学(博士研究生),2018年春

学术成果

【主要学术论文】

32. Quan Wen, Yanrong Zeng, Fotios Petropoulos, Yanfei Kang* (2025). Coherent forecasts for tourism demand with automated immutability constraints. Tourism Management 113: 105342. (SSCI, ABS4)

31. Bohan Zhang, Anastasios Panagiotelis, Yanfei Kang* (2024). Discrete forecast reconciliation. European Journal of Operational Research 318(1): 143-153. (SCI, ABS4)

30. Shengjie Wang, Yanfei Kang*, Fotios Petropoulos (2024). Combining Probabilistic Forecasts of Intermittent Demand. European Journal of Operational Research 315(3): 1038–1048. (SCI, ABS4)

29. Yun Bai, Ganglin Tian, Yanfei Kang*, Suling Jia (2023). A hybrid ensemble method with negative correlation learning for regression. Machine Learning 112: 3881–3916. (SCI, JCR Q1)

28. Spyros Makridakis, Fotios Petropoulos, Yanfei Kang* (2023). Large Language Models: Their success and impact. Forecasting 5(3), 536-549.

27. Spyros Makridakis, Fotios Petropoulos, Yanfei Kang* (2023). The Impact of Large Language Models like ChatGPT on Forecasting. Foresight: The International Journal of Applied Forecasting 69:61-62.

26. Li Li, Feng Li and Yanfei Kang* (2023), “Forecasting Large Collections of Time Series: Feature-Based Methods”, In Forecasting with Artificial Intelligence: Theory and Applications. Cham , pp. 251-276. Springer Nature Switzerland.

25. Xiaoqian Wang, Rob Hyndman, Feng Li, Yanfei Kang* (2022). Forecast combinations: an over 50-year review. International Journal of Forecasting 39(4): 1518-1547. (SSCI, ABS3)

24. Bohan Zhang, Yanfei Kang, Anastasios Panagiotelis, Feng Li (2022). Optimal reconciliation with immutable forecasts. European Journal of Operational Research 308(2): 650-660. (SCI, ABS4)

23. Li Li, Yanfei Kang, Fotios Petropoulos, Feng Li (2022). Feature-based intermittent demand forecast combinations: accuracy and inventory implications. International Journal of Production Research 61(22): 7557-7572,. (SCI, ABS3)

22. Li Li, Yanfei Kang, Feng Li (2022). Bayesian forecast combination using time-varying features. International Journal of Forecasting 39(3): 1187-1302. (SSCI, ABS3)

21. Xiaoqian Wang, Yanfei Kang, Rob Hyndman, Feng Li (2022). Distributed ARIMA models for ultra-long time series. International Journal of Forecasting 39(3): 1163-1184. (SSCI, ABS3)

20. Xixi Li, Fotios Petropoulos, Yanfei Kang* (2022). Improving forecasting by subsampling seasonal time series. International Journal of Production Research 61(3): 976-992. (SCI, ABS3)

19. Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M.Z., Barrow, D.K., Bergmeir, C., Bessa, R.J., Boylan, J.E., Browell, J., Carnevale, C., Castle, J.L., Cirillo, P., Clements, M.P., Cordeiro, C., Cyrino Oliveira, F.L., De Baets, S., Dokumentov, A., Fiszeder, P., Franses, P.H., Gilliland, M., Gönül, M.S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey, N., Hendry, D.F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V.R.R., Kang, Y., Koehler, A.B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martinez, A.B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panapakidis, I., Pavía, J.M., Pedio, M., Pedregal Tercero, D.J., Pinson, P., Ramos, P., Rapach, D., Reade, J.J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H.L., Spiliotis, E., Syntetos, A.A., Talagala, P.D., Talagala, T.S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Trapero Arenas, J.R., Wang, X., Winkler, R.L., Yusupova, A., Ziel, Z. (2022). Forecasting: theory and practice. International Journal of Forecasting 38(3): 705-871. (SSCI, ABS3)

18. Yanfei Kang, Wei Cao, Fotios Petropoulos, Feng Li (2021). Forecast with forecasts: Diversity matters. European Journal of Operational Research 301(1): 180-190. (SCI, ABS4)

17. Xixi Li#, Yun Bai#, Yanfei Kang* (2021). Exploring the social influence of Kaggle virtual community on the M5 competition. International Journal of Forecasting 38(4): 1507-1518. (SSCI, ABS3)

16. Evangelos Theodorou#, Shengjie Wang#, Yanfei Kang*, Evangelos Spiliotis, Spyros Makridakis, Vassilios Assimakopoulos (2021). Exploring the representativeness of the M5 competition data, International Journal of Forecasting 38(4): 1500-1506. (SSCI, ABS3)

15. Thiyanga S. Talagala, Feng Li, Yanfei Kang* (2021). FFORMPP: Feature-based forecast model performance prediction, International Journal of Forecasting 38(3): 920-943. (SSCI, ABS3)

14. Kasun Bandara, Hansika Hewamalage, Yuan-Hao Liu, Yanfei Kang, Christoph Bergmeir (2021). Improving the accuracy of global forecasting models using time series data augmentation, Pattern Recognition 120:108148. (SCI)

13. Xiaoqian Wang, Yanfei Kang, Fotios Petropoulos, Feng Li (2021). The uncertainty estimation of feature-based forecast combinations, Journal of the Operational Research Society 73(5): 979-993. (SSCI&SCI, ABS3)

12. Yanfei Kang, Evangelos Spiliotis, Fotios Petropoulos, Nikolaos Athiniotis, Feng Li, Vassilios Assimakopoulo (2020). Déjà vu: A data-centric forecasting approach through time series cross-similarity, Journal of Business Research 132: 719-731. (SSCI, ABS3)

11. Xixi Li, Yanfei Kang, Feng Li (2020). Forecasting with time series imaging, Expert Systems with Applications 160: 113680. (SCI, ABS3)

10. Yanfei Kang, Rob J Hyndman, Feng Li (2020). GRATIS: GeneRAting TIme Series with diverse and controllable characteristics, Statistical Analysis and Data Mining 13(4): 354-376. (SCI)

9. Yitian Chen, Yanfei Kang*, Yixiong Chen, Zizhuo Wang (2020). Probabilistic Forecasting with Temporal Convolutional Neural Network, Neurocomputing 399: 491-501. (SCI)

8. Feng Li, Yanfei Kang* (2018). Improving forecasting performance using covariate-dependent copula models, International Journal of Forecasting 34(3): 456-476. (SSCI, ABS3)

7. Yanfei Kang*, Rob J. Hyndman, Kate Smith-Miles. (2017). Visualising Forecasting Algorithm Performance using Time Series Instance Space. International Journal of Forecasting 33(2): 345–358. (SSCI, ABS3)

6. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2015). Classes of Structures in the Stable Atmospheric Boundary Layer. Quarterly Journal of the Royal Meteorological Society 141(691): 2057–2069. (SCI)

5. Yanfei Kang. (2015). Detection, classification and analysis of events in turbulence time series. Bulletin of the Australian Mathematical Society 91(3): 521-522. (SCI)

4. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2014). Detecting and classifying events in noisy time series. Journal of the Atmospheric Sciences 71(3): 1090–1104. (SCI)

3. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2014). A note on the relationship between turbulent coherent structures and phase correlation. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(2) 023114: 1-6. (SCI)

2. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2013). How to extract meaningful shapes from noisy time-series subsequences? In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, pp. 65–72. (EI)

1. Yanfei Kang. (2012). Real-time change detection in time series based on growing feature quantization. In: Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–6. (EI)

其他

【主要科研项目】

‣ 2026 年 – 2029 年,决策驱动的时间序列预测研究,国家自然科学基金面上项目, 负责人

‣ 2022 年 – 2025 年,大规模时间序列的联合预测研究:全局模型视角,国家自然科学基金面上项目, 负责人

‣ 2021年 – 2024年,北京航空航天大学“青年拔尖人才支持计划”,负责人

‣ 2018 年 – 2020 年,基于实例空间的时间序列预测研究,国家自然科学基金青年项目, 负责人

‣ 2017 年 – 2019 年,北京航空航天大学 “卓越百人计划” ,负责人